Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Lancet ; 401(10376): 568-576, 2023 02 18.
Article in English | MEDLINE | ID: covidwho-20236778

ABSTRACT

BACKGROUND: On the basis of low-quality evidence, international critical care nutrition guidelines recommend a wide range of protein doses. The effect of delivering high-dose protein during critical illness is unknown. We aimed to test the hypothesis that a higher dose of protein provided to critically ill patients would improve their clinical outcomes. METHODS: This international, investigator-initiated, pragmatic, registry-based, single-blinded, randomised trial was undertaken in 85 intensive care units (ICUs) across 16 countries. We enrolled nutritionally high-risk adults (≥18 years) undergoing mechanical ventilation to compare prescribing high-dose protein (≥2·2 g/kg per day) with usual dose protein (≤1·2 g/kg per day) started within 96 h of ICU admission and continued for up to 28 days or death or transition to oral feeding. Participants were randomly allocated (1:1) to high-dose protein or usual dose protein, stratified by site. As site personnel were involved in both prescribing and delivering protein dose, it was not possible to blind clinicians, but patients were not made aware of the treatment assignment. The primary efficacy outcome was time-to-discharge-alive from hospital up to 60 days after ICU admission and the secondary outcome was 60-day morality. Patients were analysed in the group to which they were randomly assigned regardless of study compliance, although patients who dropped out of the study before receiving the study intervention were excluded. This study is registered with ClinicalTrials.gov, NCT03160547. FINDINGS: Between Jan 17, 2018, and Dec 3, 2021, 1329 patients were randomised and 1301 (97·9%) were included in the analysis (645 in the high-dose protein group and 656 in usual dose group). By 60 days after randomisation, the cumulative incidence of alive hospital discharge was 46·1% (95 CI 42·0%-50·1%) in the high-dose compared with 50·2% (46·0%-54·3%) in the usual dose protein group (hazard ratio 0·91, 95% CI 0·77-1·07; p=0·27). The 60-day mortality rate was 34·6% (222 of 642) in the high dose protein group compared with 32·1% (208 of 648) in the usual dose protein group (relative risk 1·08, 95% CI 0·92-1·26). There appeared to be a subgroup effect with higher protein provision being particularly harmful in patients with acute kidney injury and higher organ failure scores at baseline. INTERPRETATION: Delivery of higher doses of protein to mechanically ventilated critically ill patients did not improve the time-to-discharge-alive from hospital and might have worsened outcomes for patients with acute kidney injury and high organ failure scores. FUNDING: None.


Subject(s)
Critical Care , Critical Illness , Adult , Humans , Critical Illness/therapy , Intensive Care Units , Hospitalization , Respiration, Artificial , Registries
2.
Nutr Clin Pract ; 2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2240378

ABSTRACT

In 1747, an important milestone in the history of clinical research was set, as the Scottish surgeon James Lind conducted the first randomized controlled trial. Lind was interested in scurvy, a severe vitamin C deficiency which caused the death of thousands of British seamen. He found that a dietary intervention with oranges and lemons, which are rich in vitamin C by nature, was effective to recover from scurvy. Because of its antioxidative properties and involvement in many biochemical processes, the essential micronutrient vitamin C plays a key role in the human biology. Moreover, the use of vitamin C in critical illness-a condition also resulting in death of thousands in the 21st century-has gained increasing interest, as it may restore vascular responsiveness to vasoactive agents, ameliorate microcirculatory blood flow, preserve endothelial barriers, augment bacterial defense, and prevent apoptosis. Because of its redox potential and powerful antioxidant capacity, vitamin C represents an inexpensive and safe antioxidant, with the potential to modify the inflammatory cascade and improve clinical outcomes of critically ill patients. This narrative review aims to update and provide an overview on the role of vitamin C in the human biology and in critically ill patients, and to summarize current evidence on the use of vitamin C in diverse populations of critically ill patients, in specific focusing on patients with sepsis and coronavirus disease 2019.

3.
Crit Care ; 25(1): 260, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1854842

ABSTRACT

BACKGROUND: The optimal protein dose in critical illness is unknown. We aim to conduct a systematic review of randomized controlled trials (RCTs) to compare the effect of higher versus lower protein delivery (with similar energy delivery between groups) on clinical and patient-centered outcomes in critically ill patients. METHODS: We searched MEDLINE, EMBASE, CENTRAL and CINAHL from database inception through April 1, 2021.We included RCTs of (1) adult (age ≥ 18) critically ill patients that (2) compared higher vs lower protein with (3) similar energy intake between groups, and (4) reported clinical and/or patient-centered outcomes. We excluded studies on immunonutrition. Two authors screened and conducted quality assessment independently and in duplicate. Random-effect meta-analyses were conducted to estimate the pooled risk ratio (dichotomized outcomes) or mean difference (continuous outcomes). RESULTS: Nineteen RCTs were included (n = 1731). Sixteen studies used primarily the enteral route to deliver protein. Intervention was started within 72 h of ICU admission in sixteen studies. The intervention lasted between 3 and 28 days. In 11 studies that reported weight-based nutrition delivery, the pooled mean protein and energy received in higher and lower protein groups were 1.31 ± 0.48 vs 0.90 ± 0.30 g/kg and 19.9 ± 6.9 versus 20.1 ± 7.1 kcal/kg, respectively. Higher vs lower protein did not significantly affect overall mortality [risk ratio 0.91, 95% confidence interval (CI) 0.75-1.10, p = 0.34] or other clinical or patient-centered outcomes. In 5 small studies, higher protein significantly attenuated muscle loss (MD -3.44% per week, 95% CI -4.99 to -1.90; p < 0.0001). CONCLUSION: In critically ill patients, a higher daily protein delivery was not associated with any improvement in clinical or patient-centered outcomes. Larger, and more definitive RCTs are needed to confirm the effect of muscle loss attenuation associated with higher protein delivery. PROSPERO registration number: CRD42021237530.


Subject(s)
Dietary Proteins/administration & dosage , Energy Intake/physiology , Critical Illness/therapy , Dietary Proteins/therapeutic use , Enteral Nutrition/methods , Enteral Nutrition/standards , Humans , Mortality/trends , Randomized Controlled Trials as Topic/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL